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The problem of unsteady behaviour of a floating thin plate is solved. The simultaneous
motion of the plate and the fluid is considered within the framework of linear
shallow-water theory. It is assumed that the bottom is not uniform in depth under
the heterogeneous plate represented by an infinitely extended strip of finite width.
The elastic deflection of the plate is expressed by a superposition of modal functions
of a homogeneous beam with free edge conditions. The time-dependent unknown
amplitudes are determined from the solution of a linear set of ordinary differential
equations with constant coefficients. The eigenvalues of this set are determined
numerically. Proposed method is used for the solution of three unsteady problems: the
scattering of localized surface wave by an elastic plate, decay of the initial deformation
of the plate in the fluid at rest and the action of a periodic load on a plate. Numerical
calculations are performed for the ice sheet with the variable thickness and various
bottom topographies.

1. Introduction
Unsteady forcing of a floating thin plate can be used to model a wide range

of physical systems: for example, very large floating structures, sea ice floes and
breakwaters. Because of their large size and small thickness, the elastic response
of such structures is significant. At present, there exists an extensive literature
on hydroelastic analysis of the floating platforms (see, for example, the reviews
by Watanabe, Utsunomiya & Wang 2004; Ohmatsu 2005; Chen et al. 2006). The
interactions of sea ice and ocean waves are considered in recent review by Squire
(2007). Much attention in this review is given to effect of various irregularities in an
ice sheet.

However, the effect of structure heterogeneity and a varying water depth was
investigated only for diffraction problem, by solving the linear hydroelastic problem
for a single frequency (see, for example, Porter & Porter 2004; Bennetts, Biggs & Porter
2007). The aim of this paper is to consider the unsteady hydroelasticity problem for
a heterogeneous plate floating on shallow water of variable depth. This problem has
been chosen because the sea-bottom effects become more significant in shallow water,
than that in deep water. The actual floating structures (both the ice floes and the
manufactured platforms) show variability on all spatial scales.
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In contrast to the single-frequency solutions, solving time-dependent hydroelastic
systems remains a difficult problem. Even for linear formulation the solution of
three-dimensional transient problem for the finite floating plate is a complicated
task that requires high computational cost. Only a limited number of studies on
this kind of the problem have been reported to date. For example, Watanabe &
Utsunomiya (1996) presented the numerical results of the elastic responses of a
very large circular floating structure excited by impulsive loading. Meylan (1997)
considered the periodic forced vibrations of an arbitrary thin plate floating on the
surface of an infinitely deep fluid. Using a spectral method, he applied these results
for the consideration of the time-dependent motion of the rectangular plate due to
an impulsive forcing pressure. Ohmatsu (1998) proposed a calculation method based
on Fourier transforms, adopting the frequency-domain response function to analyse
the behaviour of a floating structure influenced by an arbitrary changing load. Endo
& Yago (1999) carried out experiments under three loading conditions – weight
drop test, weight pull-up test and weight moving test which idealize the airplane
landing and take-off. They also developed a time-domain analysis method based on
a finite element method (FEM) scheme, which utilized the memory effect function
for hydrodynamic effects. Kashiwagi (2000, 2004) has developed a numerical method
for the time-dependent elastic deflection of a structure by utilizing a superposition
of mathematical modal functions. Lee & Choi (2003) proposed a hybrid method
to analyse the transient hydroelastic response of a floating structure by utilizing
boundary element method for fluid domain and FEM for plate domain. Qui &
Liu (2005) developed a time-dependent FEM to analyse the transient hydroelastic
responses of a floating structure subjected to dynamic loads. In most of the numerical
methods, a floating structure is modelled as a simple rectangular or circular plate.
The three-dimensional unsteady hydroelastic problem is simplified for an elastic plate
floating on shallow water. Sturova (2003) considered the behaviour of a circular
elastic plate under the action of an external load by using a superposition of modal
functions.

There are some studies in which the two-dimensional unsteady hydroelastic problem
is considered. In this case the elastic plate presents an infinitely extended elastic strip
of finite width. It is assumed that the properties of the strip, the bottom and the
unsteady load do not depend on the horizontal direction along the strip. The time-
dependent behaviour of an elastic strip floating on shallow water has been investigated
by Meylan (2002) and Sturova (2002b). Meylan (2002) used a spectral method for
a massless elastic plate and considered the scattering of localized surface wave by
an elastic plate and the behaviour of the plate caused by its initial deformation
in the fluid at rest. Sturova (2002b) studied the behaviour of floating plate under
external loading by using a mode-expansion method and a time-stepping procedure.
The response of the plate under different impulsive and moving loadings with and
without allowance for the inertia of load was considered. It was shown that in the
general case of the motion of a massive load on the plate with large acceleration, the
inertial forces arising due to combined oscillations of this load and the plate (inertial
loading) should be taken into account.

Sturova (2006b) employed the mode-expansion method and the memory-effect
functions to study the behaviour of a strip floating on the surface of an infinitely
deep fluid. Unsteady response of an elastic strip subjected to initial perturbations
and different external loadings was investigated. In the two-dimensional problem, it
is possible to avoid the assumptions introduced for the three-dimensional problem in
Endo & Yago (1999) and Kashiwagi (2000, 2004) to determine the memory functions
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because the behaviour of damping coefficients in the high-frequency limit is known
exactly for the radiation problem.

Time-dependent behaviour of the elastic strip floating on water of finite depth
was studied by Hazard & Meylan (2007) and Qui (2007). Hazard & Meylan (2007)
presented two spectral theories based on the first-order and second-order formulations
of the problem. The first-order theory is valid only for a massless plate, while the
second-order theory applies for a plate with mass. As in Meylan (2002), the scattering
of localized surface wave by an elastic plate and the behaviour of the plate caused
by its initial deformation in the fluid at rest are considered. Qui (2007) developed a
time-domain FEM to analyse the dynamic response of a floating plate under the effects
of impulsive and moving loads. The results for a moving load were compared with
the results by Sturova (2002b) and good agreement was observed. Significant effects
of the travelling speed, the water depth and the width of a strip on the behaviour of
floating elastic strip subjected to moving loads were shown. In all of these studies of
unsteady hydroelastic problem, the floating structure was idealized as a homogeneous
elastic plate and the fluid was assumed either infinitely deep or with a flat bed.

In this paper, a time-domain method is developed to analyse the hydroelastic
response of a heterogeneous strip floating on shallow water of variable depth. The
simultaneous motion of the plate and the fluid is considered within the framework
of linear theory. This paper is the extension of two papers by Sturova (2008a, b).
Effect of variable depth on time-dependent response of a homogeneous elastic plate
is considered in the first paper. Unsteady behaviour of a heterogeneous plate floating
on shallow water with a flat bed is studied in the second paper. Two methods
were presented for the solution of this problem. Both the methods are based on
the expansion of the plate motion in the dry modes of vibration of the free plate. The
eigenfunctions of a heterogeneous plate were used in the first method, whereas the
eigenfunctions of a homogeneous plate were used in the second method. A correlation
between two methods was demonstrated for the elastic plate with piece-wise constant
functions for the flexural rigidity and mass. It was shown a good quantitative
agreement between the numerical results of these two methods. Unfortunately,
free natural modes of vibration can only be determined analytically for very few
heterogeneities, for example, if the flexural rigidity and mass of the elastic plate
are piece-wise constant functions. More general heterogeneities demand a numerical
approach. As a consequence, the use of the eigenfunctions of a homogeneous plate is
more preferentially for the arbitrary heterogeneities. Three unsteady problems were
considered in Sturova (2008a): the scattering of localized surface wave by an elastic
plate, the behaviour of the plate caused by its initial deformation in the fluid at rest
and the effect of a moving external load. Only the first two unsteady problems were
studied in Sturova (2008b).

In this paper, the elastic deflections of the plate are expressed by a superposition of
modal functions of a homogeneous beam with free edge conditions. Proposed method
may be used for any unsteady two-dimensional problem of linear shallow-water
theory, but here this method is used for three problems: the incidence of a localized
surface wave on a plate, the initial deformation of a plate, and the action of a periodic
load on a plate.

2. Mathematical formulation
Figure 1 shows a schematic diagram of the problem. An elastic heterogeneous plate

floats on the surface of an inviscid incompressible fluid layer which is bounded below
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Figure 1. Schematic diagram of a heterogeneous plate floating on shallow water of variable
depth.

by a fixed impermeable bed. The plate is infinite in the y direction, so that only the x

and z directions are considered. The x direction is horizontal, the positive z-axis points
vertically up, and the plate covers the region −L � x � L. The surface of the fluid that
is not covered with the plate is free. The fluid region S is divided into three parts:
S0 (|x| <L), S1 (x < − L) and S2 (x > L). Without the plate, the fluid depth is equal
to H (x) in S0, and the fluid depths in the left- and right-hand domains of constant
depth S1 and S2 are equal to H1 and H2, respectively. With the plate, the fluid depth
in S0 is equal to h(x) = H (x) − d(x), where d(x) is the variable draft of the plate. It is
assumed that the maximal depth of the fluid is small in comparison with the length
of the surface and the flexural-gravity waves, and the shallow water approximation is
used. The fluid flow is assumed to be irrotational. The velocity potentials describing
the fluid motion in the regions Sj are denoted by φj (x, t) (j = 0, 1, 2), where t is
time.

A deflection of a heterogeneous elastic plate w(x, t) is described by the equation:

∂2

∂x2

(
D(x)

∂2w

∂x2

)
+ m(x)

∂2w

∂t2
+ gρw + ρ

∂φ0

∂t
= −p(x, t), (|x| � L), (2.1)

where D(x) is the flexural rigidity of the plate, m(x) is the mass per unit length of
the plate, ρ is the fluid density, g is the gravity acceleration and p(x, t) denotes the
external load acting upon the plate. According to Archimedes’ principle,∫ L

−L

[m(x) − ρd(x)] dx = 0. (2.2)

The functions D(x) and m(x) must have an integrable second derivatives, be piecewise
continuous themselves, and must have piecewise continuous first derivatives. For the
case of a homogeneous plate, we have the constant values for D, m and d (see, for
example, Sturova 2002b).

According to linear shallow-water theory, the following relation is valid (Stoker
1957):

∂w

∂t
= − ∂

∂x

(
h(x)

∂φ0

∂x

)
, (x ∈ S0). (2.3)

In the free-water regions, the velocity potentials φ1(x, t) and φ2(x, t) satisfy the
equations

∂2φj

∂t2
= gHj

∂2φj

∂x2
(x ∈ Sj ), (j = 1, 2). (2.4)

Far from the plate, the wave motion goes to zero

∂φ1

∂x
→ 0 (x → −∞),

∂φ2

∂x
→ 0 (x → ∞). (2.5)
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The displacements of the free surface η1(x, t) and η2(x, t) are determined in the
regions S1 and S2 from the relations

ηj = −1

g

∂φj

∂t
(x ∈ Sj ), (j = 1, 2). (2.6)

If |x| = L, the matching conditions (continuity of pressure and mass) should be
satisfied:

∂φ0

∂t
=

∂φ1

∂t
,

∂φ0

∂x
=

H1

h1

∂φ1

∂x
, (x = −L), h1 = H1 − d(−L), (2.7a)

∂φ0

∂t
=

∂φ2

∂t
,

∂φ0

∂x
=

H2

h2

∂φ2

∂x
, (x = L), h2 = H2 − d(L). (2.7b)

It should be noted that elevation of water surface is not continuous on the boundaries
between region S0 and regions S1, S2. At the edges of the plate, the free-edge
conditions are satisfied, which imply that the bending moment and shear force are
equal to zero:

∂2w

∂x2
=

∂3w

∂x3
= 0, (|x| = L). (2.8)

By assuming for simplicity that at initial time the fluid in the region S2 is at rest, the
initial conditions have the form

w = w0(x), φ0 = φ0
0(x), η1 = η0

1(x), φ1 = φ0
1(x), η2 = φ2 = 0 (t = 0). (2.9)

It is also interesting to consider the energy of the plate: the potential energy Ep

and the kinetic energy Ek are given by the following integrals (Timoshenko 1959):

Ep =
1

2

∫ L

−L

D(x)

(
∂2w

∂x2

)2

dx, Ek =
1

2

∫ L

−L

m(x)

(
∂w

∂t

)2

dx. (2.10)

Non-dimensional variables are used below: L is taken as the length scale and
√

L/g

as the time scale.

3. Mode expansions
The plate deflection is sought in the form of an expansion in the eigenfunctions of

vibrations of a free-edges homogeneous beam in vacuum

w(x, t) =

∞∑
n=0

Xn(t)Wn(x). (3.1)

Here the functions Xn(t) are to be determined and the functions Wn(x) are solutions
of the spectral problem in non-dimensional variables:

W ′′′′
n = λ4

nWn (|x| � 1),

W ′
2n = W2n+1 = 0 (x = 0), W ′′

n = W ′′′
n = 0, (|x| = 1).

The prime denotes differentiation with respect to x. These solutions have the form
(Timoshenko 1959):

W0 = 1/
√

2, W2k = D2k[cos(λ2kx) + S2k cosh(λ2kx)], (k � 1),

W1 =
√

3/2x, W2k+1 = D2k+1[sin(λ2k+1x) + S2k+1 sinh(λ2k+1x)], (k � 1),
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where Sn = cos λn/ cosh λn and Dn = 1/
√

1 + (−1)nS2
n . The eigenvalues of λn are found

from the equation tan λn + (−1)n tanh λn = 0 (n � 2), λ0 = λ1 = 0. The functions
Wn(x) form a complete orthogonal system for which∫ 1

−1

Wn(x)Wm(x) dx = δmn,

where δmn is the Kronecker symbol.
We substitute expansion (3.1) into (2.1) and initial conditions (2.9), multiply the

obtained relations by Wm(x), and integrate them over x from −1 to 1. Using the
properties of the functions Wn(x) and integration by parts, we obtain the set of
ordinary differential equations (ODEs):

∞∑
n=0

[TnmẌn + (δmn + Pnm)Xn] + Zm(t) = −Ωm(t) for m = 0, 1, 2, . . . (3.2a)

with the initial conditions

Xm(0) = X0
m, Ẋm(0) = X1

m, (3.2b)

where

Tnm =

∫ 1

−1

γ (x)Wn(x)Wm(x) dx, Pnm =

∫ 1

−1

β(x)W ′′
n (x)W ′′

m(x) dx, (3.2c)

Zm(t) =

∫ 1

−1

∂φ0

∂t
Wm(x) dx, Ωm(t) =

∫ 1

−1

p(x, t)Wm(x) dx, (3.2d)

X0
m =

∫ 1

−1

w0(x)Wm(x) dx, X1
m = −

∫ 1

−1

(
h(x)φ0 ′

0 (x)
)′

Wm(x) dx, (3.2e)

β(x) =
D(x)

ρgL4
, γ (x) =

m(x)

ρL
,

and an overdot denotes differentiation with respect to time. The coefficients Tnm and
Pnm in (3.2c) as well as the functions Ωm(t) in (3.2d) can be determined numerically
for the given functions β(x), γ (x) and p(x, t). However, we should find the function
φ0(x, t) for the determination of the functions Zm(t).

According to (2.3), a solution for φ0(x, t) is sought in the form

φ0(x, t) =

∞∑
n=0

Ẋn(t)Ψn(x) + q(x, t), (3.3)

where the functions Ψn(x) satisfy the equation

Ψ ′
n(x) = −Vn(x)/h(x), V ′

n(x) = Wn(x),

and have the form

Ψn(x) = −
∫ x

−1

Vn(ξ )

h(ξ )
dξ, V0 =

x√
2
, V2k =

D2k

λ2k

[sin(λ2kx) + S2k sinh(λ2kx)],

V1 =

√
3x2

2
√

2
, V2k+1 =

D2k+1

λ2k+1

[S2k+1 cosh(λ2k+1x) − cos(λ2k+1x)].
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The unknown function q(x, t) in (3.3) is determined from the equation

∂

∂x

(
h(x)

∂q

∂x

)
= 0,

and has the form

q(x, t) = Q(x)u(t) + v(t), Q(x) =

∫ x

−1

h−1(ξ ) dξ.

The initial conditions for the functions u(t) and v(t) are determined from (2.9), (3.2b)
and (3.3) as

u(0) = u0, v(0) = v0, (3.4)

where

u0 =
1

χ

[
φ0

0(1) − φ0
0(−1) −

∞∑
n=0

X1
nΛn

]
, v0 = φ0

0(−1), Λn = Ψn(1), χ = Q(1).

The functions u(t) and v(t) are determined from the matching conditions (2.7a, b).
In order for these conditions to be used, we should define the forms of the solutions
in the regions S1 and S2. It is known that an arbitrary localized disturbance in
unbounded shallow water over a flat bottom falls into two waves which propagate
without deformation with the constant velocity in the opposite directions (Stoker
1957). For the considered problem, the wave of interest propagates along the positive
x direction. It is assumed that initially the incoming wave pulse is non-zero only in the
region S1. Its velocity potential can be written as ψ0(x − t

√
H1) and the corresponding

displacement of the free surface has the form ζ0(x − t
√

H1), where ζ0 =
√

H1∂ψ0/∂x.
According to the initial conditions (2.9), we have

φ0
0(x) = ψ0(x), η0

1(x) = ζ0(x).

The solution for φ1(x, t) is sought in the form

φ1(x, t) = ψ0(x − t
√

H1) + ψ(x, t). (3.5)

The function ψ(x, t) defines the velocity potential of the reflected surface waves.
According to (2.4), the solution for ψ(x, t) has the form

ψ(x, t) =

⎧⎨
⎩

A((x + 1)/
√

H1 + t), −(1 +
√

H1t) < x < −1,

0, x < −(1 +
√

H1t),

(3.6)

where the function A(ξ ) is unknown and should be determined. This function is the
velocity potential at x = − 1 for the reflected wave for t = ξ .

In a similar manner, we can seek the solution for φ2(x, t), which defines the velocity
potential of the transmitted surface waves:

φ2(x, t) =

⎧⎨
⎩

B(t − (x − 1)/
√

H2), 1 < x < 1 +
√

H2t,

0, x > 1 +
√

H2t,

(3.7)

where the function B(ξ ) is to be determined. This function is the velocity potential at
x = 1 for the transmitted wave for t = ξ .
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By substituting (3.3), (3.5)–(3.7) in the matching conditions (2.7a, b), we obtain
sequentially four equations:

Ȧ = v̇ + α(t), (3.8a)

Ȧ = (u + Ẋ0R0 − Ẋ1R1)/
√

H1 − α(t), (3.8b)

Ḃ =

∞∑
n=0

ẌnΛn + χu̇ + v̇, (3.8c)

Ḃ = (Ẋ0R0 + Ẋ1R1 − u)/
√

H2, (3.8d)

where Rn = Vn(1), α(t) = ζ0|x = −1. It can be easily shown that R0 = 1/
√

2,

R1 =
√

1.5/2, Rn =0 for n � 2. Equations (3.8b) and (3.8d) provide the differential
equations for the definition the function A(t) and B(t) with the initial conditions
A(0) = B(0) = 0. From (3.8a) and (3.8b), we have the equation for v̇:

v̇ =
1√
H1

(u + Ẋ0R0 − Ẋ1R1) − 2α(t).

Using this equation, the functions Zm(t) in (3.2a, d) have the form

Zm(t) =

∫ 1

−1

Wm(x)

[ ∞∑
n=0

ẌnΨn(x) + Q(x)u̇ + v̇

]
dx

=

∞∑
n=0

Ẍn(ΛnRm + Cnm) + Gmu̇ +
√

2δm0

[
(u + Ẋ0R0 − Ẋ1R1)/

√
H1 − 2α

]
, (3.9)

where

Cnm =

∫ 1

−1

Vn(x)Vm(x)

h(x)
dx, Gm = χRm + Λm.

After substitution (3.9) in (3.2a) and application (3.8a–d), the final set of ODEs
has the form

∞∑
n=0

[(
Tnm − ΛnΛm

χ
+ Cnm

)
Ẍn + (δnm + Pnm)Xn

]
+

[
Gm

χ

(
1√
H2

− 1√
H1

)

+

√
2

H1

δ0m

]
Ẋ0R0 +

[
Gm

χ

(
1√
H1

+
1√
H2

)
−

√
2

H1

δ0m

]
Ẋ1R1 +

[√
2

H1

δ0m − Gm

χ

×
(

1√
H1

+
1√
H2

)]
u + 2

(
Gm

χ
−

√
2δ0m

)
α = −Ωm(t) (m = 0, 1, 2, . . .), (3.10a)

u̇ =
1

χ

[(
1√
H2

− 1√
H1

)
Ẋ0R0 +

(
1√
H1

+
1√
H2

)
(Ẋ1R1 − u) −

∞∑
n=0

ẌnΛn + 2α

]
,

(3.10b)

with initial conditions (3.2b) and (3.4). It should be pointed that this set is a linear
set with constant coefficients, which contains two derivatives of Xn, one derivative of
u and does not contain v.

Once the Xn(t) and u(t) are determined, we can find all characteristics of motion
of the fluid and the elastic plate. For example, the displacement of the free surface of
the fluid in region S1 can be written in view of (3.5) as

η1(x, t) = ζ0(x − t
√

H1) + ζ (x, t),
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where

ζ (x, t) =

{
−Ȧ((x + 1)/

√
H1 + t), −(1 +

√
H1t) < x < −1,

0, x < −(1 +
√

H1t).

In region S2, we have

η2(x, t) =

{
−Ḃ(t − (x − 1)/

√
H2), 1 < x < 1 +

√
H2t,

0, x > 1 +
√

H2t.

The functions Ȧ(ξ ) and Ḃ(ξ ) are determined from (3.8b) and (3.8d).
The energy of reflected wave motion Er (t) (the sum of the potential and kinetic

energies) is equal to (Stoker 1957)

Er (t) =

∫ −1

−(1+
√

H1t)

ζ 2(x, t) dx =
√

H1

∫ t

0

Ȧ2(ξ ) dξ. (3.11)

The energy of transmitted wave motion Et (t) is equal to

Et (t) =

∫ 1+
√

H2t

1

η2
2(x, t) dx =

√
H2

∫ t

0

Ḃ2(ξ ) dξ. (3.12)

Using the reduction method, we replace the infinite series in the expansion (3.1) by
the finite sum with number of terms N . Equation (3.10a) can be written in the matrix
form

AẌ + BẊ + DX + Fu = G, (3.13)

where A, B, C are the square matrices of order N , but X, D, F, G are the vectors, the
vector X = {X0, X1, . . . , XN−1}T , and the superscript T is denoted the transposition.
After inversion of the symmetric matrix A in (3.13), we have

Ẍ = A−1(G − BẊ − DX − Fu). (3.14)

By substituting (3.14) in (3.10b), we can write the final set of ODEs in the matrix
form

Ẏ = CY + H(t), (3.15)

where the vector Y = {X, Ẋ, u}T , C is the square matrix of order 2N + 1 with the
constant coefficients which depend only on the properties of the plate and the fluid
and independent of the wave forcing, whereas the vector H(t) is determined by the
unsteady load.

The solution of reduced set of ODEs (3.10a, b) in the matrix form (3.15) can be
numerically obtained by two ways: the time-stepping procedure and the calculation
of the eigenvalues and the eigenvectors of the matrix C. The second way is better
because it is possible to write the explicit solution for any wave forcing (see, for
example, Godunov 1997). The knowledge of the eigenvalues allows to predict also
the peak response of the plate for the harmonically forced vibration.

4. Action of periodic surface pressures
The problem of the behaviour of an elastic floating plate under the action of

periodic surface load is related to the problem for a single frequency. In contrast
to the diffraction problem, the effect of periodic load is studied in a small body
of literature. Apart from the paper by Meylan (1997) which has been mentioned
in Introduction, the action of periodic load was considered by Sturova (2002a) for
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a plate of finite and semi-infinite breadth in the two-dimensional case and for a
circular plate in the three-dimensional case. A vertical mode expansion was used. The
solutions obtained for a fluid of finite depth and for shallow water were compared.
The two-dimensional problem was studied by Tkacheva (2005a) for a fluid of finite
depth using the Wiener–Hopf technique. This technique was also applied to the
problem of the behaviour of a floating elastic plate under periodic vibrations of
a bottom section (Tkacheva 2005b). The action of periodic pressure on an elastic
plate floating on the surface of an infinitely deep fluid was considered by Sturova &
Korobkin (2005) using the expansion in terms of modal functions of a beam with free
edges conditions. The behaviour of wave motion generated by periodic pressure on
a rectangular elastic plate was considered within the shallow-water theory in Sturova
(2006a). The boundary-integral-equation method was applied. It was shown that
waveguide properties occur for an elongated plate. The existence of trapped mode
solution for an elastic strip was found out by Tkacheva (2000).

All mentioned models about a periodic load supposed the homogeneous elastic
plate over a bed that is either flat or infinitely deep. Let us consider the hydroelastic
behaviour of a heterogeneous plate floating on shallow water of variable depth.
A time-periodic pressure with frequency ω acts on the plate. The single-frequency
equations are based on assuming that all time-dependent quantities in (2.1) are
proportional to eiωt , so that

p(x, t) = Re[P (x)eiωt ], w(x, t) = Re[W (x)eiωt ], (4.1a)

φj (x, t) = Re[Φj (x)eiωt ], (j = 0, 1, 2). (4.1b)

Then (2.1) and (2.3) can be written in non-dimensional variables as

(β(x)W ′′)′′ + W [1 − ω2γ (x)] + iωΦ0 = −P (x), (4.2a)

W =
i

ω

(
h(x)Φ ′

0

)′
. (4.2b)

It is assumed that the others sources of the wave forcing are absent.
In the free-water regions, we have from (2.4):

Φj = −HjΦ
′′
j /ω2 (x ∈ Sj ), (j = 1, 2). (4.3)

Far from the plate, it is necessary to take account of the radiation condition

Φ ′
1 − ik1Φ1 = 0 (x → −∞), k1 = ω/

√
H1, (4.4a)

Φ ′
2 + ik2Φ2 = 0 (x → ∞), k2 = ω/

√
H2. (4.4b)

The matching conditions and the free-edge conditions should be added at |x| =1 by
analogy with (2.7a, b) and (2.8).

According to (4.3) and the radiation condition (4.4a, b), the solutions for Φ1(x) and
Φ2(x) can be written as

Φ1(x) = Aeik1x, Φ2(x) = Be−ik2x, (4.5)

where the complex constants A and B are unknown and should be determined. Using
the expansion of the plate motion in the free modes, we have by analogy with (3.1)

W (x) =

∞∑
n=0

XnWn(x), (4.6)
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where Xn are unknown complex constants now. For the problem of a single frequency,
the set of ODEs (3.10a, b) is reduced to the set of linear algebraic equations for Xn.

It is of interest to determine averaged over the period 2π/ω the values of the
potential energy and the kinetic energy. Using (2.10) and (4.1a), we have in non-
dimensional variables

Ep =
1

2

∫ 1

−1

β(x)[Re(W ′′) cosωt − Im(W ′′) sinωt]2 dx, (4.7a)

Ek =
ω2

2

∫ 1

−1

γ (x)[Re(W ) sinωt + Im(W ) cos ωt]2 dx. (4.7b)

Averaged values of the potential energy 〈Ep〉 and the kinetic energy 〈Ek〉 can be
written with regard to (3.2c) and (4.6) as

〈Ep〉 =
1

4

∞∑
m=0

∞∑
n=0

ΥmnPmn, 〈Ek〉 =
ω2

4

∞∑
m=0

∞∑
n=0

ΥmnTmn, (4.8)

where Υmn = Re(Xm)Re(Xn) + Im(Xm)Im(Xn).

5. Numerical results
The physical properties for ice sheet are used in all of the results presented in this

section (see, for example, Bennetts, Biggs & Porter 2007). The flexural rigidity of the
ice sheet is equal to (returning to the dimensional variables)

D(x) =
EF 3(x)

12(1 − ν2)
,

where E = 5 × 109 Pa is Young’s modulus for ice, F (x) is its varying thickness and
ν = 0.3 is Poisson’s ratio for ice. The mass per unit length of the ice sheet is equal to
m(x) = ρ1F (x), where ρ1 = 922.5 kg m−3 is the ice density. For simplicity assume that
each segment of the ice would be neutrally buoyant, i.e. d(x) = ρ1F (x)/ρ, the density
of the water ρ = 1025 kg m−3. In this case (2.2) is fulfilled identically.

The width of the ice sheet is equal to 2L = 500 m. The ice thickness is given by the
functions

F (x) = F0 + AD

(
1 − |x|

L

)
, (5.1)

F (x) = F0 +
AD

2

(
1 +

x

L

)
. (5.2)

The first function represents local bulge in the ice of size F0 + AD in the middle of
the ice sheet, whereas the second function represents a linear increase in ice thickness
over the interval (−L, L).

Four different variations of sea-bottom topography are considered: the hump, the
pit and two kinds of the slope. The profile which is described by the function

H (x) = H1 + HD

[(
x

L

)2

− 1

]
(5.3)



316 I. V. Sturova

at H1 = H2 corresponds to the hump at HD > 0 and the pit at HD < 0. The depth of
water rises linearly for the slopes

H (x) = (H2 − H1)
x

L
+ H2 (−L < x < 0), H (x) = H2 (0 < x < L), (5.4)

H (x) =
1

2

[
(H2 − H1)

x

L
+ H1 + H2

]
. (5.5)

The first one (slope I) is that the bottom varies linearly from the left edge of floating
plate to the middle of that. The second one (slope II) is that it varies linearly from
the left edge to the right one.

The infinite series in the expansions (3.1) and (4.6) are replaced with a sum of
N terms. In all presented calculations, N = 30, and further increase of N gives
graphically indistinguishable results in the figures presented below. The set of ODEs
(3.10a, b) in the matrix form (3.15) is solved using both the fourth-order Runge–Kutta
scheme and the explicit solution with the eigenvalues/eigenvectors. The coefficients
Cnm, Pnm, Tnm, Λn and χ are determined using numerical integration.

For the problem of the scattering of localized surface wave by an elastic plate, the
incoming wave was chosen in the form

ζ0(ξ ) =

{
0.5a[1 + cos(πξ/c)], |ξ | < c,

0, |ξ | > c,

where ξ = x − t
√

gH1 − x0, and x0 is the initial location of the wave peak. In all of
the presented results we use x0/L = − 1.25, and c/L = 0.25. Total energy of this wave
E0 (the sum of the potential energy and the kinetic energy) is equal to (Stoker 1957)

E0 = ρg

∫ c

−c

ζ 2
0 (ξ ) dξ = 3ρga2c/4. (5.6)

Notice that for this wave, the potential energy is equal to the kinetic energy.
It is assumed, that at the initial time the plate and fluid in the regions S0 and S2

are at rest, and the external load is absent. By this is meant that w0(x) = φ0
0(x) = 0

in (2.9) and p(x, t) = 0 in (2.1). In region S1, the localized displacement of the free
surface travels to the right. At t = 0 this wave reaches the left edge of the plate and
the plate begins to undergo a complex bending motion in response to the incoming
wave. As t → ∞, the plate oscillations decay and the plate returns to its original state.
The energies of reflected and transmitted surface waves are determined in (3.11) and
(3.12). Since dissipation is absent in the considered problem, we have in accordance
with (5.6)

lim
t→∞

[Er (t) + Et (t)] = E0. (5.7)

The fulfilment of this equality is a criterion of the accuracy of the method of solution
used.

Figure 2 shows the displacements of the free surface (the thin lines) and the elastic
plate (the bold lines) for a surface localized wave travelling to the right at the time
t
√

g/L =0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5 and 12. The ice thickness is given by (5.1) with
F0 = 1 m and AD = 2 m. The bottom topography has the form of the hump (5.3) with
H1 = 20 m and HD = 10 m. At t = 0 the plate is at rest and the wave is to the left of
plate propagating towards it. Then the incoming wave passes under the plate, that
leads to its bending motion. The response of the plate in turn induces waves in the
surrounding water which propagate away from the plate to the left and right. The



Time-dependent response of a heterogeneous elastic plate 317

0

0.5

1.0

0–5 5 0–5 5 0–5 5

0–5 5 0–5 5 0–5 5

0

x/L x/L x/L

–5 5 0–5 5 0–5 5

–0.5

0

0.5

1.0

–0.5

0

0.5

1.0

–0.5

η1/a
w/a
η2/a

0

0.5

1.0

–0.5

0

0.5

1.0

–0.5

0

0.5

1.0

–0.5

η1/a
w/a
η2/a

0

0.5

1.0

–0.5

0

0.5

1.0

–0.5

0

0.5

1.0

–0.5

η1/a
w/a
η2/a

t √⎯
g/L = 0 t √⎯

g/L = 1.5 t √⎯
g/L = 3.0

t √⎯
g/L = 4.5 t √⎯

g/L = 6.0 t √⎯
g/L = 7.5

t √⎯
g/L = 9.0 t √⎯

g/L = 10.5 t √⎯
g/L = 12.0

Figure 2. The time evolution of the free surface (the thin lines) and the plate (the bold lines)
due to a localized surface wave travelling to the right is shown. The function F (x) is given
by (5.1), with F0 = 1 m and AD = 2 m. The function H (x) is given by (4.3), with H1 = 2HD =
20 m.

final picture, t
√

g/L = 12, shows the plate approaching the state of rest, with waves
now propagating away from it. The majority of the wave energy has passed under
the plate and continues to propagate to the right. However, the shape of the outgoing
wave profile is markedly different from the incoming wave profile. Also, there is an
appreciable reflected wave propagating away from the plate to the left.

The comparison of the displacements of the free surface and the elastic plate for
the homogeneous and heterogeneous plates with different topographies is presented
in figure 3 at the times t

√
g/L = 6 (a–c) and t

√
g/L = 12 (d–f ). Figures 3(a) and 3(d )

correspond to the homogeneous plate with the function F (x) = F0 = 1 m and the flat
bottom with the depth H1 = 20 m. Figures 3(b) and 3(e) also correspond to the flat
bottom, but the ice thickness is given by (5.1) with F0 = 1 m and AD = 2 m. The same
ice thickness is used for figures 3(c) and 3(f ), but the bottom topography has the
form of the pit with H1 = 20 m and HD = − 10 m.

A comparison between figures 3 and 2 for the times t
√

g/L = 6, 12 shows that the
behaviour of the elastic plate and the free surface is conditioned significantly by both
the plate properties and the bed shapes. It should be noted that at t

√
g/L = 12 the

plate is practically at rest for the flat bottom and the pit; however, there are still
noticeable deflections of the plate for the hump.

Time variations of the sum E(t) = Er (t)+Et (t) are presented in figure 4 for the same
cases as in figures 2 and 3. The limiting value of the summarized energy is achieved
most rapidly in the case of the pit. Therefore, the plate oscillations are damped in
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Figure 3. Comparison of the behaviour of free surface (the thin lines) and the plate (the
bold lines) at t

√
g/L = 6 (a–c) and t

√
g/L = 12 (d–f ). (a) and (d), F (x) =F0 = 1 m and

H (x) =H1 = 20 m; (b) and (e), F0 = 1 m, AD = 2 m and H (x) =H1 = 20 m; (c) and (f ),
F0 = 1 m, AD =2 m and the bed shape (5.3) with H1 = 20 m, HD = − 10 m.

this case more effectively then for three other cases. The most prolonged oscillations
take place in the presence of the hump. For all cases the total energy of the reflected
waves Er (t) is low and does not exceed 0.02E0.

In figure 5, the effect both of the ice thickness given by (5.2) with F0 = 1 m,
AD = 2 m and the bed shapes (5.4), (5.5) with H1 = 20 m, H2 = 10 m is investigated for
the times t

√
g/L = 6 (a–c) and t

√
g/L = 12 (d–f ). As in figures 2 and 3, the behaviour

of the elastic plate and the free surface is conditioned significantly by both the plate
heterogeneity and the bottom topography. Time evolution of the summarized energy
E(t) for these cases is shown in figure 6. The limiting value of the summarized
energy is achieved most rapidly in the case of the flat bottom. The most prolonged
oscillations take place in the presence of the slope I. In this case we have also the
highest value of the total energy of the reflected waves Er (t), which runs up to 0.04E0.
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Figure 4. Time variation of the energy of surface waves. The lines with symbols correspond
to: the crosses, F (x) =F0 = 1 m and H (x) =H1 = 20 m; the dark circles, F0 = 1 m, AD = 2 m
and H (x) =H1 = 20 m; the open circles, F0 = 1 m, AD = 2 m and the bed shape (5.3) with
H1 = 20 m, HD = 10 m; the triangles, F0 = 1 m, AD = 2 m and the bed shape (5.3) with
H1 = 20 m, HD = − 10 m.

The relative error of the fulfilment of the equality (5.7) does not exceed 0.5 % for all
calculations which are presented in figures 2–6.

Next, we consider the plate behaviour caused by its initial deformation in the fluid
at rest. The initial plate velocity is equal to zero and the external load is absent. Now,
we have φ0

0(x) = η0
1(x) = φ0

1(x) = 0 in (2.9) and p(x, t) = 0 in (2.1). The set of ODEs
for the solution of this problem coincides with (3.10a, b) provided that now α(t) ≡ 0.
The function w0(x) in (2.9) is chosen in the form

w0(x) =
a

2

(
1 + cos

πx

L

)
.

The deflections of the heterogeneous ice plate induced by its initial displacement
are shown in figure 7 at the time t

√
g/L =0, 1.5, 3, 4.5, 6 and 7.5. The ice thickness is

given by (5.2) with F0 = 1 m, AD = 2 m. The solid lines correspond to the flat bottom
with H (x) = H1 = 20 m, the dashed lines and the dash-dotted ones correspond to
the bed shapes (5.4) and (5.5), respectively, with H1 = 20 m, H2 = 10 m. The initial
deformation disappears with time and the plate tends to a horizontal unperturbed
position. The plate oscillations attenuate more rapidly for the fluid with the constant
depth. The most prolonged oscillations take place for the slope I.

Of some interest in the considered problem is the analysis of the eigenvalues of the
matrix C in (3.15), which can be determined by numerically. This matrix has one pure
real eigenvalue μ0 and 2N complex conjugate eigenvalues μj (j = ± 1, ±2, . . . , ±N).
The real part of all eigenvalues is negative due to the radiation of energy with surface
waves. The eigenvalues are ordered by increasing imaginary part, i.e. Imμj < Imμj+1.
The sign of j corresponds to the sign of the imaginary part of the eigenvalue μj .

Figure 8 shows the location of the eigenvalues μj at j = 0, 1, . . . , J , where J

is defined from the condition Imμj

√
L/g < 10. Figure 8(a) corresponds to the flat

bottom and the different heterogeneities of the ice plate, whereas figure 8(b) shows
the effect of the bed shape for the heterogeneous plate. We can see that both the
heterogeneity of the plate and the bottom topography have an appreciable effect on
the distribution of the eigenvalues. The time history of the plate motion is determined
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Figure 5. As for figure 3 except that the ice thickness given by (5.2) with F0 = 1 m, AD = 2 m:
(a) and (d), H (x) =H1 = 20 m; (b) and (e), the bed shape (5.4) with H1 = 2H2 = 20 m; (c) and
(f ), the bed shape (5.5) with H1 = 2H2 = 20 m.

basically by the lower eigenvalues because these eigenvalues have the larger real parts.
Among the considered cases the largest real part takes place for the heterogeneous
plate with the ice thickness given by (5.2) with F0 = 1 m, AD =2 m and the bed shape
in the form of slope I that provides the most prolonged oscillations of the plate in
this case (cf. figures 5–7).

It should be pointed out that the determination of the eigenvalues is very important
for the single-frequency solutions. As noted in Meylan (2001), from a knowledge of
the eigenvalues we can predict the frequencies for which the response of the floating
elastic plate is maximum in the diffraction problem. The imaginary parts of the
eigenvalues allow us to find the real frequencies at which the transmission coefficient
is unity and the reflection is zero. Meylan (2001, 2002) calculated the eigenvalues for
the typical input data of a large floating structure such as a floating runway. It was
assumed that the homogeneous elastic plate floats on shallow water of the constant
depth. He used a complex search algorithm based on the properties of contour
integrals of analytical functions. This search algorithm was much more numerically



Time-dependent response of a heterogeneous elastic plate 321

0
2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

E
/E

0

1.0

t √⎯
g/L

Figure 6. As for figure 4 except that the ice thickness given by (5.2) with F0 = 1 m and
AD = 2 m. The lines with symbols correspond to: the dark circles, H (x) =H1 = 20 m; the
open circles, the bed shape (5.4) with H1 = 2H2 = 20 m; the triangles, the bed shape (5.5) with
H1 = 2H2 = 20 m.
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Figure 7. The evolution of the elastic plate caused by its initial deformation for the ice
thickness given by (5.2) with F0 = 1 m and AD = 2 m. The solid lines are for the flat bottom
with H (x) =H1 = 20 m, the dashed lines are for the bed shape (5.4) and the dash-dotted lines
are for the bed shape (5.5) with H1 = 2H2 = 20 m.

difficult than the matrix eigenvalue problem we solve here to find these points. A
correlation was made between the results by Meylan (2001, 2002) and the results
of the proposed method. Good agreement is obtained with the only difference that
the real part of the eigenvalues of this paper corresponds to the imaginary part of
Meylan’s papers and vice versa. Also good agreement is obtained at the comparison
of the behaviour of the elastic plate and free surface for the unsteady problems which
were considered by Meylan (2002).

The interrelation between the eigenvalues and the peak response of the plate has
now been demonstrated with the problem on the action of a periodic load. The
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Figure 8. The location of the first eigenvalues. (a) The flat bottom with H (x) =H1 = 20 m;
the dark circles, the homogeneous ice plate with F (x) =F0 = 1 m; the open circles, the
heterogeneous ice plate with the ice thickness given by (5.1) with F0 = 1 m and AD =2 m; the
triangles, the heterogeneous ice plate with the ice thickness given by (5.2) with F0 = 1 m and
AD = 2 m. (b) The heterogeneous ice plate with the ice thickness given by (5.2) with F0 = 1 m
and AD = 2 m: the open circles, the bed shape given by (5.4); the triangles, the bed shape
given by (5.5), both with H1 = 2H2 = 20 m.

following pressure distribution is used in (4.2a):

P (x) =

{
aρg

[
1 − (x − x0)

2/c2
]
, |x − x0| < c,

0, |x − x0| > c,
(5.8)

where a has a dimension of the length and |x0| + c < L. Figure 9(a) shows the non-
dimensional values of the averaged potential energy Ēp = 〈Ep〉/(a2ρgL), the averaged
kinetic energy Ēk = 〈Ek〉/(a2ρgL) and their sum Ēs = Ēp + Ēk as a function of the
frequency at x0/L = 0.75 and c/L = 0.1. The ice thickness is given by (5.2) with
F0 = 1 m, AD = 2 m and the bed shape given by (5.5) with H1 = 20 m, H2 = 10 m.
The stars show the imaginary part of the eigenvalues (cf. figure 8b). We can see that
the value of the potential energy significantly greater than the value of the kinetic
energy. The frequency dependence of the potential energy as well as the kinetic one
is extremely non-monotonic. The peaks occur at the frequencies which correspond to
the imaginary part of the eigenvalues. The frequency dependence of the total energy
Ēs for the various values x0 and c is shown in figure 9(b). The solid, dash-dotted
and dotted lines correspond to c/L = 0.1 with x0/L = 0, 0.25, 0.5, respectively, and
the dashed line corresponds to x0/L = 0.75 and c/L = 0.05. As seen from the figures
9(a) and 9(b), the distribution of the total energy Ēs with frequency essentially
depends on the location and the form of the external load. A knowledge of the
eigenvalues/eigenvectors of the considered problem and the methods of the theory
of vibrations (see, for example, Müller & Schiehlen 1985) allow to determine the
frequencies which produce the maximal response of the floating plate for the given
pressure.
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Figure 9. Averaged energy of the plate as a function of frequency for the heterogeneous ice
plate with the ice thickness given by (5.2) at F0 = 1 m and AD = 2 m and the bed shape
given by (5.5) at H1 = 2H2 = 20 m. The stars show the imaginary part of the eigenvalues.
(a) The pressure distribution (5.8) with x0/L = 0.75 and c/L =0.1. The solid, dotted and
dashed lines correspond to the total energy Ēs , the potential energy Ēp and the kinetic

energy Ēk , respectively. (b) The solid, dash-dotted and dotted lines correspond to c/L = 0.1
with x0/L = 0, 0.25, 0.5, respectively, and the dashed line corresponds to x0/L = 0.75 and
c/L = 0.05.

6. Conclusion
The time-domain mode-expansion method is developed for hydroelastic analysis

of the heterogeneous plate floating on shallow water of variable depth. Numerical
simulations are carried out for three unsteady problems: the scattering of localized
surface wave by a plate, decay of the initial displacement of the plate and action
of a periodic load on a plate. Effects of both the uneven bottom and the structural
heterogeneity of the floating plate are considered. It is shown that both these effects
have a profound impact on the plate deflections and wave motion of the fluid. The
sea-bottom effects should be considered when the floating structure is placed in the
coastal area. The simple easy-to-use model applied in this study captures the main
characteristics of the complex problem of unsteady hydroelasticity. The proposed
method can be extended to the case of a circular plate subject to the condition that
the bottom undulations are located only beneath the plate. Unsteady behaviour of
a homogeneous circular plate floating on shallow water with a flat bottom has been
presented in Sturova (2003).
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